A priori SNR estimation and noise estimation for speech enhancement

نویسندگان

  • Rui Yao
  • ZeQing Zeng
  • Ping Zhu
چکیده

A priori signal-to-noise ratio (SNR) estimation and noise estimation are important for speech enhancement. In this paper, a novel modified decision-directed (DD) a priori SNR estimation approach based on single-frequency entropy, named DDBSE, is proposed. DDBSE replaces the fixed weighting factor in the DD approach with an adaptive one calculated according to change of single-frequency entropy. Simultaneously, a new noise power estimation approach based on unbiased minimum mean square error (MMSE) and voice activity detection (VAD), named UMVAD, is proposed. UMVAD adopts different strategies to estimate noise in order to reduce over-estimation and under-estimation of noise. UMVAD improves the classical statistical model-based VAD by utilizing an adaptive threshold to replace the original fixed one and modifies the unbiased MMSE-based noise estimation approach using an adaptive a priori speech presence probability calculated by entropy instead of the original fixed one. Experimental results show that DDBSE can provide greater noise suppression than DD and UMVAD can improve the accuracy of noise estimation. Compared to existing approaches, speech enhancement based on UMVAD and DDBSE can obtain a better segment SNR score and composite measure covl score, especially in adverse environments such as non-stationary noise and low-SNR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Improved a Priori SNR Estimation for Speech Enhancement Incorporating Speech Distortion Component

The well known decision-directed (DD) approach drastically limits the level of musical noise, but the estimated a priori SNR matches the previous frame rather than the current one. Plapous introduced a novel method called two-step noise reduction (TSNR) technique to refine the a priori SNR estimation of the DD approach. However, the performance of this method depends on the accurateness of the ...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Reducing over- and under-estimation of the a priori SNR in speech enhancement techniques

a r t i c l e i n f o a b s t r a c t A priori SNR A posteriori SNR SNR cells Spectral distortion Most speech enhancement methods based on short-time spectral modification are generally expressed as a spectral gain depending on the estimate of the local signal-to-noise ratio (SNR) on each frequency bin. Several studies have analyzed the performance of a priori SNR estimation algorithms to impro...

متن کامل

A Priori SNR Estimation Using Weibull Mixture Model

This contribution introduces a novel causal a priori signalto-noise ratio (SNR) estimator for single-channel speech enhancement. To exploit the advantages of the generalized spectral subtraction, a normalized α-order magnitude (NAOM) domain is introduced where an a priori SNR estimation is carried out. In this domain, the NAOM coefficients of noise and clean speech signals are modeled by a Weib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016